
J. Fluid Mech. (2004), vol. 498, pp. 353–380. c© 2004 Cambridge University Press

DOI: 10.1017/S0022112003006979 Printed in the United Kingdom

353

Secondary flow in sharp open-channel bends
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Secondary currents are a characteristic feature of flow in open-channel bends. Besides
the classical helical motion (centre-region cell), a weaker and smaller counter-rotating
circulation cell (outer-bank cell) is often observed near the outer bank, which is
believed to play an important role in bank erosion processes. The mechanisms
underlying the circulation cells, especially the outer-bank cell, are still poorly
understood, and their numerical simulation still poses problems, not least due to
lack of detailed experimental data. The research reported herein provides detailed
experimental data on both circulation cells in an open-channel bend such as found
in nature. Furthermore, the underlying dynamics are investigated by simultaneously
analysing the vorticity equation and the kinetic energy transfer between the mean flow
and the turbulence. This shows that turbulence plays a minor role in the generation
of the centre-region cell, which is mainly due to the centrifugal force. By accounting
for the feedback between the downstream velocity profile and the centre-region
cell, a strongly simplified vorticity balance is shown to yield accurate predictions
of the velocities in the centre region. For strong curvatures, however, a fully three-
dimensional flow description is required. Due to the non-monotonic velocity profiles,
the centrifugal force favours the outer-bank cell. Moreover, terms related to the
anisotropy of the cross-stream turbulence, induced by boundary proximity, are of the
same order of magnitude and mainly enhance the outer-bank cell. Both mechanisms
strengthen each other. The occurrence of the outer-bank cell is shown to be not just
due to flow instability, like in the case of curved laminar flow, but also to kinetic
energy input from turbulence.

1. Introduction
Curved open-channel flow is characterized by the existence of cross-stream cir-

culation cells (secondary flow). By advecting flow momentum, these determine the
spatial distributions of the velocities and the boundary shear stresses (Blanckaert &
Graf 2004), and thereby shape the topography in the case of a mobile bottom.

Besides the ‘classical’ helical motion (called hereafter the centre-region cell) that
covers a large part of the cross-section (called hereafter the centre region), a weaker
counter-rotating cell is often observed near the outer bank. Although relatively small
and weak, this outer-bank cell is important, as it tends to protect steep outer banks
from erosion (Christensen, Gislason & Fredsoe 1999; Blanckaert & Graf 2004).
Figure 1 illustrates both circulation cells in a reach of an open-channel bend.

Detailed experiments on these two circulation cells are scarce (Booij & Tukker
1996; Blanckaert & Graf 2001; Blanckaert 2002a, b; Booij 2003), because they
require accurate high-resolution measurements of the transverse and vertical velocity
components on a fine grid. Many experimental investigations so far have provided
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Figure 1. Definition sketch of curved open-channel flow and cross-stream circulation.

data with a relatively low accuracy on a relatively coarse grid (see Blanckaert &
Graf 2001). This explains why, in spite of the fact that the occurrence of the second
cell was reported in the literature long ago (e.g. Mockmore 1943), studies usually
concentrate on the centre-region cell far from the banks.

The mechanisms underlying the two circulation cells are revealed by the downstream
vorticity balance, in which the centrifugal force and the cross-stream turbulent stresses
play a dominant role. So far, the experimental confirmation of this observation has
been hampered by the scarcity of measured data on these cross-stream turbulent
stresses.

The centre-region cell is usually explained in terms of the local imbalance between
the driving centrifugal force and the transverse pressure gradient (e.g. Rozovskii 1957).
Turbulence is known to be important to the generation of the outer-bank cell. Yet,
there is little insight available into the dynamics of the turbulence in the vicinity of
that cell, and even the conditions of occurrence of the outer-bank cell are almost
unknown.

The experimental research presented herein aims at obtaining a more detailed
picture of the double-cell pattern in an open-channel bend such as found in nature, so
as to gain insight into its dynamics and especially into the role of turbulence, and to
find guidance for numerical modelling. In order to clarify the role of turbulence, we
simultaneously analyse the vorticity equation and the kinetic energy transfer between
mean flow and turbulence. The experimental data are derived from simultaneous
high-resolution measurements of the three velocity components on a fine grid in one
cross-section of a bend in a laboratory flume. This makes it possible to evaluate all
three mean velocity components, as well as all turbulent stress components. Based
on these results, the relevant terms in the vorticity equation and the kinetic energy
transfer between the mean flow and the turbulence can be evaluated.

In the first part of this paper, a theoretical framework of the analysis is given
and the current state of knowledge on the cross-stream circulation is reviewed.
The importance of considering the kinetic energy transfer between mean flow and
turbulence is shown. Subsequently, the experiment is presented and the mechan-
isms underlying the two circulation cells are analysed on the basis of the experimental
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data and focusing on the downstream vorticity balance and the exchange of kinetic
energy. Special attention is paid to the implications for numerical modelling.

2. The downstream vorticity equation
A cylindrical coordinate system is adopted, with the curvilinear s-axis pointing

downstream along the channel axis, the transversal n-axis pointing to the left and the
vertical z-axis pointing the upward from the horizontal (s, n)-plane (also see figures
1 and 2). The transformation of the flow equations from a Cartesian to a cylindrical
coordinate system is given by Batchelor (1970, p. 598).

The cross-stream motion, (vn, vz), is governed by the transverse and vertical
momentum equations for incompressible flow (Schlichting & Gersten 2000):
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in which (1 + n/R) is a metric factor accounting for the divergence of the n-coordinate
lines, R being the radius of curvature of the channel axis; p is the pressure; t is time;
g is the gravitational acceleration; �v = (vs, vn, vz) and �v′ = (v′

s, v
′
n, v

′
z) are the mean

and fluctuating velocity components; −ρv′
j v

′
k (j, k = s, n, z) are the turbulent stresses;

ν is the molecular kinematic viscosity; ∇2 is the Laplace operator.
The transverse momentum equation (1) is dominated by the centrifugal-force and

pressure-gradient terms, which nearly balance each other. The vertical momentum
equation (2) is dominated by the hydrostatic balance, g + ρ−1∂p/∂z ≈ 0. Thus these
equations do not clearly reveal the dynamics of the cross-stream motion. For clarity, a
distinction will be made between the translatory and the circulatory parts of the cross-
stream motion, which Bradshaw (1987) names cross-flow and identifiable downstream
vortices, respectively. The translatory part, which is mainly pressure-induced, will not
be considered herein. The circulatory part, which is independent of the pressure field,
is represented by the downstream component of the vorticity vector

ωs =
∂vz

∂n
− ∂vn

∂z
. (3)

Thus the cross-stream circulation is represented by a scalar, instead of a vector
field. The downstream vorticity balance provides a good basis for analysis. The cor-
responding equation is obtained by cross-differentiation of equations (1) and (2),
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thus eliminating the pressure:

∂ωs

∂t
= −

(
1

1 + n/R
vs

∂ωs

∂s
+ vn

∂ωs

∂n
+ vz

∂ωs

∂z

)
+

1

1 + n/R
ωs

∂vs

∂s

+

[
ωn

∂vs

∂n
+ ωz

∂vs

∂z
+

1

1 + n/R

vnωs

R
− 1

1 + n/R

vsωn

R

]
− 1

1 + n/R

∂

∂z

(
v′

s
2

R

)

+
∂2

∂z∂n

(
v′

n
2 − v′

z
2
)

+
1

1 + n/R

1

R

∂v′
n
2

∂z

+

{
1

1 + n/R

∂2

∂z2
− ∂

∂n

(
1

1 + n/R

∂

∂n

)} [
(1 + n/R)v′

nv
′
z

]

+
∂

∂z

(
1

1 + n/R

∂v′
sv

′
n

∂s

)
− ∂

∂n

(
1

1 + n/R

∂v′
sv

′
z

∂s

)

+ ν

(
∇2ωs +

2

(1 + n/R)2
1

R

∂ωn

∂s
− 1

(1 + n/R)2
1

R2
ωs

)
, (4)

in which the n- and z-components of the vorticity vector are defined by
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Without pretending mathematical rigour, this equation can be interpreted as follows
in physical terms (e.g. Perkins 1970; Demuren & Rodi 1984; Bradshaw 1987; Nezu &
Nakagawa 1993):

(i) The terms vn∂ωs/∂n+ vz∂ωs/∂z in the first line represent the advective
transport of downstream vorticity by the cross-stream motion (vn, vz). This mechanism
does not generate or dissipate ωs , but just redistributes it over the cross-section.

(ii) The ωs∂vs/∂s-term in the first line represents amplification of ωs due to vortex
stretching.

(iii) The terms in square brackets in the second line represent skewing-induced
vorticity redistribution by quasi-inviscid deflection of existing mean vorticity
ω̄(ωs, ωn, ωz). Skewing-induced vorticity corresponds to Prandtl’s circulation of the
first kind (Prandtl 1942, pp. 130–134). By substitution of the definitions (3) and (5),
these terms can be transformed into
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(6)

showing terms accounting for downstream non-uniformities (the ∂/∂s-terms in square
brackets), a curvature-induced term with vnωs/R, and a term associated with the
centrifugal force, −v2

s /R. The latter term shows that the centrifugal force is a source
of skewing-induced vorticity.

(iv) The last term in the second line of the equation is a turbulence-related
centrifugal force term.

(v) The third and fourth lines represent the influence of the cross-stream turbulent
stress components on the vorticity field. Globally, vorticity is dissipated by these tur-
bulent stresses. In certain regions of the flow domain, however, these terms represent
generation of mean vorticity (see below). Turbulence-generated vorticity corresponds
to Prandtl’s circulation of the second kind (Prandtl 1942, pp. 130–134).
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(vi) The terms in the fifth line of equation (4), as well as the ∂/∂s-terms in the
first line relate to the downstream non-uniformity of the flow. They vanish for
axisymmetric curved flow (defined by ∂/∂s = 0), whence they are not essential to the
mechanisms underlying the two cross-stream circulation cells.

(vii) The last line represents the dissipation by the molecular viscosity.
The literature on cross-stream circulation either directly refers to this vorticity
equation, or the findings reported put in terms of it. Therefore, it makes sense to
summarize the current state of knowledge before continuing on the energy transfer
between mean flow and turbulence.

3. Current state of knowledge
Three-dimensional numerical models, especially for closed-conduit flow, are capable

of reproducing secondary flow. The results, however, depend critically on the model
formulation, especially the turbulence closure and the treatment of the boundary
conditions. Therefore, it is worthwhile to analyse the mechanisms that lead to these
secondary flow phenomena. Since these mechanisms are different for the centre-region
cell and the outer-bank cell, these two cells will be treated separately in the following
description of the state of the art.

3.1. Centre-region cell

The centre-region cell has been thoroughly investigated in the past, with Boussinesq
(1868) and Thomson (1876) as pioneers. Its formation is usually explained by the
local imbalance between the centrifugal force and the cross-stream pressure gradient,
represented by the simplified transverse momentum equation (cf. equation (1))
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The corresponding simplified downstream vorticity equation (cf. equations (4)–(6)) is
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This equation expresses the balance between vorticity generation by the centrifugal
force and vorticity dissipation by the turbulent shear stress and the molecular viscosity,
respectively. The mechanism is similar in laminar and turbulent curved flow. Assuming
a hydrostatic pressure distribution, a vertical profile of the downstream velocity and,
in the case of turbulent flow, the eddy viscosity, the vertical profile of the cross-stream
velocity in the central part of the centre-region cell can be solved from either of the
above equations.

Models that treat the cross-stream velocity as a first-order perturbation to the
downstream velocity profile for straight flow are called linear. Such models, which
ignore higher-order feedback, have been proposed by among others, Rozovskii (1957),
Engelund (1974), Kikkawa, Ikeda & Kitagawa (1976), de Vriend (1977), Falcon
Ascanio & Kennedy (1983) and Johannesson & Parker (1989). Kalkwijk & de Vriend
(1980) and Ikeda, Yamasaka & Kennedy (1990) propose basically similar models that
are claimed to be valid throughout the cross-section. These linear models only give
good results for very mildly curved bends, but overestimate the strength of the centre-
region cell for moderately to strongly curved bends, as illustrated by the experimental
data of de Vriend (1981a), Booij & Tukker (1996), Blanckaert (2001) and Blanckaert
& de Vriend (2004).
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Their overestimation is a consequence of neglecting the nonlinear feedback between
the downstream velocity and the centre-region cell (cf. de Vriend 1981a). Advective
momentum transport by the centre-region cell deforms the vs-profile, decreasing the
velocity in the upper part of the water column and increasing it in the lower part
(Blanckaert & Graf 2004; cf. figure 3c in § 6). This deformation of the vs-profile
reduces the vertical gradient of the centrifugal force, (∂/∂z)(v2

s / |R|), which, according
to equation (8), is the driving mechanism for the cross-stream circulation.

Blanckaert & de Vriend (2004) propose a nonlinear model that accounts for this
feedback. Similar to the linear models, a vertical profile of the eddy viscosity is
assumed. However, instead of prescribing a straight-flow vs-profile, they calculate the
deformed vs-profile from a simplified downstream momentum equation that accounts
for advective momentum redistribution by the centre-region cell. This deformed vs-
profile is subsequently inserted into equation (8), yielding the vertical profile of the
cross-stream velocity in the central part of the centre-region cell. This model compares
rather well with experimental data for moderately to strongly curved flow (Blanckaert
& Graf 2004; Blanckaert & de Vriend 2004).

Although this comparison with data is promising, it is not clear to what extent
the nonlinear model captures all mechanisms relevant to the formation of the centre-
region cell. Especially, the effects of neglecting advective transport in equations (7)
and (8) and the rather basic modelling of turbulence need further investigation.

3.2. Outer-bank cell

Outer-bank cells have often been observed in curved turbulent flow and are believed
to play an important role in the stability of the outer bank (Bathurst, Thorne &
Hey 1979; de Vriend 1981a, b; Christensen et al. 1999; Blanckaert & Graf 2004). Yet,
little is known about the underlying mechanisms and the conditions under which
these cells occur. This can be attributed to the difficulty of accurately measuring the
velocities and the turbulent stresses involved (further, see Blanckaert & Graf 2001).
Both skewing-induced and turbulence-induced vorticity generation must be expected
to play a role. Similar cells have been observed in curved laminar flow and in straight
turbulent flow, which can be seen as asymptotic cases showing either one of the
vorticity-generating mechanisms. Before considering curved turbulent flow, we will
briefly summarize the literature on both of these asymptotic cases.

3.2.1. Curved laminar flow

The control parameter of outer-bank cell formation in curved laminar flow is the
Dean number, defined as the product of the Reynolds number and the square root
of a curvature ratio, e.g. De = Re(H/R)0.5, or De = Re(B/R)0.5. Physically, it can be
interpreted as the ratio between the centrifugal effect, which favours the outer-cell
formation, and the molecular dissipation, which opposes it. Numerical investigations
have been made by Cheng, Lin & Ou (1976), de Vriend (1981b) and Winters (1987)
for the case of axisymmetric curved flow (∂/∂s = 0). They show that, on increasing
the Dean number, the outer-bank cell suddenly comes into existence at a critical
value of De. As the curvature increases, advective redistribution of momentum by
the secondary flow deforms the vs-profiles, and correspondingly decreases the driving
centrifugal term (∂/∂z)(v2

s /|R|) in the vorticity equation. The outer-bank cell comes
into existence when the vs-profiles are so strongly deformed that the driving term
changes sign in the upper part of the water column (cf. figure 3c in § 6). For the
axisymmetric curved flows investigated in these numerical models, the outer-bank cell
was only slightly weaker than the centre-region cell. These numerical results have
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been confirmed by an experimental investigation of the flow in a 180◦ curved duct
by Hille, Vehrenkamp & Schulz-Dubois (1985). However, they found the outer-bank
cell to be much weaker than the centre-region cell in most of the bend, and only gain
strength beyond 120◦.

3.2.2. Straight turbulent flow

Prandtl (1942) suggests that the near-bank circulation cells in straight turbulent
flow are caused by turbulence. Einstein & Li (1958) show in a rigorous analysis
that gradients of turbulent stresses generate the corresponding downstream vorticity.
Ever since, the role of the cross-stream turbulence terms in the downstream vorticity
equation has been investigated extensively, in experiments as well as in numerical
models.

Due to the difficulty in accurately measuring the turbulent stresses, most
experiments have been carried out in uniform airflow (closed conduits) and seldom
include measurements of v′

nv
′
z (except Perkins 1970). Demuren & Rodi (1984)

summarize the experimental findings of Brundett & Baines (1964), Gessner & Jones
(1965), Perkins (1970) and Gessner (1973), stating that the dominant terms in the

downstream vorticity equation (4) include v′
n
2 − v′

z
2 and v′

nv
′
z, which are almost equal

and of opposite sign. The difference is of the same order of magnitude as the advective
terms vn∂ωs/∂n+ vz∂ωs/∂z and drives the near-bank cells. Nezu & Nakagawa (1984)
and Nezu, Nakagawa & Tominaga (1985) analyse the downstream vorticity equation
in airflow experiments in rectangular ducts, whereas Tominaga et al. (1989) use
open-channel flow experiments with different boundary roughnesses, aspect ratios
and sidewall inclinations. They could not measure the turbulent shear stress v′

nv
′
z and

suggest that v′
n
2 − v′

z
2 is the source of the cross-stream circulation and that v′

nv
′
z acts

as a dissipator (also see Nezu & Nakagawa 1993). Bradshaw (1987), on the other
hand, points out that the relative contributions of v′

n
2 − v′

z
2 and v′

nv
′
z only depends

on the orientation of the n- and z-axes, as is readily illustrated by representing the
cross-stream turbulent stress components on a Mohr circle.

Nezu & Nakagawa (1993) highlight the importance of the free water surface, by
comparing the turbulence-generated cross-stream circulation cells in open channels
with those in curved ducts. Furthermore, they give a detailed description of the
interactions between the cross-stream circulation, the cross-stream turbulence, the
distributions of the mean flow and the boundary shear stress, the boundary properties,
the channel geometry, etc.

Naot & Rodi (1982) and Demuren & Rodi (1984) claim that the turbulence-
generated near-bank cells in straight turbulent flow cannot be simulated with linear
eddy viscosity models, i.e. models assuming a linear stress–strain relationship. They
succeed in simulating them with an Algebraic Stress Model. Speziale (1987) attributes
this failure of linear eddy viscosity models (such as the linear k−ε model) to their
inability to correctly represent the turbulent normal stresses and proposes nonlinear
turbulence models (k−ε and k−l models) that are able to simulate the near-bank cells.
Indeed, Colombini (1993) succeeds in simulating these cells with such a nonlinear
turbulence model. Kawahara & Tamai (1988) demonstrate mathematically that linear
eddy viscosity models cannot simulate turbulence-induced cross-stream circulation.

These theoretical, experimental and numerical investigations lead to the following
hypothesis concerning the formation of near-bank circulation cells in straight uniform
turbulent flow. Since the advective transport only redistributes vorticity over the cross-
section and is fundamentally unable to generate or dissipate vorticity, the cross-stream
turbulent stresses, v′

n
2 − v′

z
2 and v′

nv
′
z, have to account for both the generation and the
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dissipation of vorticity. The vorticity equation, however, does not indicate whether the
cross-stream turbulence terms generate or dissipate mean downstream vorticity ωs .
Physically speaking, no distinction can be made between the role of the turbulent

normal stresses v′
n
2 − v′

z
2 and the role of the turbulent shear stress v′

nv
′
z, since their

relative magnitudes uniquely depend on the orientation of the n- and z-axes. Locally,
the difference between the terms including v′

n
2 − v′

z
2 and v′

nv
′
z is balanced by the

advective transport terms.

3.2.3. Curved turbulent flow

The bi-cellular pattern of cross-stream circulation has often been observed in curved
turbulent flow, in laboratory experiments (Mockmore 1943; Einstein & Harder 1954;
Rozovskii 1957; Götz 1975; Choudhary & Narasimhan 1977; Siebert 1982; Booij &
Tukker 1996; Shiono & Muto 1998; Tominaga, Nagao & Nezu 1999; Booij 2003),
as well as in the field (Bathurst et al. 1979; Dietrich & Smith 1983; de Vriend &
Geldof 1983). Yet, little is known about the mechanisms underlying it, nor about the
conditions for its occurrence.

Götz (1975) suggests that the occurrence depends on the aspect ratio, whereas
Bathurst et al. (1979) suggest that the outer-bank cell only occurs near steep banks,
not near shelving banks. In an attempt to define a quantitative criterion of occurrence,
de Vriend (1981a) assumes the mechanisms to be the same as in curved laminar flow,
where the outer-bank cell is generated by the centrifugal force only. Assuming the
cross-stream turbulent stresses to act in a similar (purely dissipative) way as the
molecular stresses in laminar flow, he replaces the molecular viscosity in the Dean
number by the depth-averaged turbulent eddy viscosity in straight uniform flow. From
observations of the outer-bank cell in mildly curved bends, however, combined with
his failure to simulate the observed pattern with fully three-dimensional numerical
models with a linear turbulence closure, de Vriend concludes that the outer-bank cell
cannot be explained from the centrifugal force only. Because the observed outer-bank
cells in bends are stronger than in the corresponding straight-channel flow, they
cannot be exclusively turbulence-generated, either.

This led to the hypothesis that the outer-bank cell in curved turbulent flow is
generated by the combined action of the centrifugal force (vortex-skewing) and
turbulence. Christensen et al. (1999) carried out numerical simulations of the outer-
bank cell with a linear k−ε closure and with a Reynolds Stress Model. From the
differences between the results they conclude that the outer-bank cell is not uniquely
skewing-induced, but that turbulent vorticity-generation plays an important role. Jia,
Blanckaert & Wang (2001) successfully simulated the outer-bank cell observed in the
present experiment with a nonlinear k−ε closure.

From this literature review, it can be concluded that the isolated behaviour of the
centrifugal term and the cross-stream turbulence terms is relatively well understood.
The insight into the physics of curved-flow turbulence and its interaction with the
centrifugal force, however, needs further development.

4. Kinetic energy transfer between mean flow and turbulence
The above considerations on the downstream vorticity equation have shown that

downstream vorticity in curved flow is generated by the centrifugal force (skewing),
and redistributed over the cross-section by the advective transport terms. To maintain
the vorticity balance, there must be dissipation by the turbulent stresses. In the case
of the near-bank cells in straight uniform flow, however, turbulent stresses are also
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responsible for the generation of vorticity. It is not clear a priori from the vorticity
equation whether locally the turbulent stresses in total increase or decrease the mean
vorticity.

By definition, the mean cross-stream motion (vn, vz) contains mean-flow kinetic
energy, (v2

n + v2
z )/2, whereas the cross-stream turbulent stresses correspond to the

cross-stream velocity fluctuations (v′
n, v

′
z) and thus contain turbulent kinetic energy,

(v′
n
2 + v′

z
2)/2. Hence, turbulence-induced near-bank circulation cells like those in

straight uniform flow require a transfer of kinetic energy from turbulence to the mean
flow.

Although previous investigations on cross-stream circulation cells were limited to
the vorticity equation, further insight may be gained by looking into the transfer
of kinetic energy between turbulence and the mean flow. Terms representing this
transfer appear with opposite signs in the dynamic equations for the mean flow and
the turbulent kinetic energy. In the turbulent kinetic energy equation, they appear as
(Hinze 1975, chap. 1–13)
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in which the turbulent kinetic energy, k, and the strain rates, ejk (j, k = s, n, z), are
defined as (Batchelor 1970, p. 600)
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∂z

)
, enz =

1

2

(
∂vz

∂n
+

∂vn

∂z

)
, ezz =

∂vz

∂z
.




(11)

Equation (9) indicates that the energy fluxes per unit mass take place through work
done by the turbulent stresses as the mean flow deforms. The sum of these energy fluxes
is (mostly) positive, i.e. from mean flow to turbulence, and is commonly called the
production or generation of turbulent kinetic energy. The sign of the kinetic energy

transfer via the cross-stream turbulent stresses, v′
n
2, v′

z
2 and v′

nv
′
z, is expected to be

especially important with respect to the turbulence-induced vorticity.

A comparison of the energy transfer related to the cross-stream turbulence with that
primarily related to boundary friction (the v′

sv
′
z- and v′

sv
′
n-terms) must give indications

of the importance with respect to the total energy loss in a bend. This will be discussed
later on in the paper.

The kinetic energy fluxes between mean flow and turbulence have important
implications for the numerical modelling of turbulence. Turbulence closure models
often make use of mixing coefficients, defined as the ratio between the deviatoric
turbulent stresses and the corresponding strain rates:

νjk = νkj = −
v′

j v
′
k − 2/3δjkk

2ejk

(j, k = s, n, z) (12)
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where δjk is the Kronecker delta. With this definition, the production of turbulent
kinetic energy (9), can be rewritten as

P = 2
(
νsse

2
ss + νnne

2
nn + νzze

2
zz + 2νsne

2
sn + 2νsze

2
sz + 2νnze

2
nz

)
. (13)

The sign of the mixing coefficient νjk indicates the sense of the corresponding kinetic
energy flux. Applying a scalar eddy viscosity for turbulence closure implies that
νss = νnn = νzz = νsn = νsz = νnz = νt > 0 and that all kinetic energy fluxes are definitely
positive:

P = 2νt

(
e2
ss + e2

nn + e2
zz + 2e2

sn + 2e2
sz + 2e2

nz

)
> 0. (14)

This implies that, when using a linear eddy viscosity concept, kinetic energy is always
transferred from the mean flow to the turbulence. By implication, the cross-stream
turbulence terms in the downstream vorticity equation (4) are always dissipative. This
means that this concept is not applicable to flows in which turbulence somehow
contributes to the mean kinetic energy.

5. Combined analysis
From the above review of the current state of knowledge it can be concluded that the

mechanisms underlying the centre-region cell and the outer-bank cell are not yet fully
understood. Research so far has mostly been restricted to the downstream vorticity
equation, whereas a simultaneous analysis of the downstream vorticity dynamics (cf.
equations (4)–(6)) and the kinetic energy transfer between mean flow and turbulence
(cf. equation (9)) seems to make more sense. Therefore, we will pursue this combined
analysis in the remainder of the paper, based on the data from the experiment
described hereafter.

The following issues will be addressed:
(i) What are the relevant mechanisms behind the generation of the centre-region

cell? Does the simplified vorticity equation (8) capture all relevant mechanisms? What
are the roles of advective transport and turbulence?

(ii) Can the hypothesis of de Vriend (1981a) and Christensen et al. (1999) that the
outer-bank cell formation is associated with both skewing-induced and turbulence-
induced vorticity be confirmed or rejected? What is the interaction between the two
mechanisms?

(iii) What is the role of the cross-stream turbulence terms, v′
n
2 −v′

z
2 and v′

nv
′
z, in the

generation of turbulence-induced vorticity? The availability of data on all turbulent
stress components must enable investigating this role in further depth.

(iv) To what extent does the cross-stream turbulence dissipate or generate vorticity?
A combined analysis of the downstream vorticity dynamics and the transfer of kinetic
energy between mean flow and turbulence must give further insight.

(v) How can strongly curved open-channel flow, and especially the outer-bank
cell, be modelled numerically?

6. Experimental data
6.1. The experiment

The experimental set-up, the instrumentation, the measuring grids, the data treatment
procedures and the distributions of the mean velocity components and the turbulent
stress components have been treated in a separate paper (Blanckaert & Graf 2001).
Therefore, only aspects that are of particular relevance to the present analysis will be
repeated here.
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Figure 2. (a) Experimental set-up, bottom topography and reference system. (b) Measuring
section at 60◦ and acoustic Doppler velocity profiler (ADVP) set-up.

Flow measurements were performed in a laboratory flume 0.4 m wide, consisting of
a 2m long straight approach reach, followed by a 120◦ bend to the left of constant
curvature (radius 2 m). In a preliminary run, the initially horizontal sand bottom was
deformed by the flow, via a process of so-called clear-water scour. Ultimately, the
sediment transport vanished throughout and a stable (zero-time-derivative) bottom
topography that significantly varies in the downstream direction was obtained
(figure 2).

At first sight, it may seem more appealing to investigate axisymmetric curved flow,
which does not continue to vary in the downstream direction (∂/∂s terms vanish in
equations (4) and (6)). However, the flow pattern in axisymmetric flow is not relevant
to that in natural bends since the centre-region cell is significantly weaker and the
outer-bank cell significantly stronger (Blanckaert 2002b; Christensen et al. 1999). We
have deliberately opted to investigate a ‘natural’ flow, even though we are not able to
estimate the downstream derivatives in the vorticity equations (4) and (6). Since these
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R B d50 Q H Ss U Cf Re Re∗ Fr R/B R/H B/H

[m] [m] [mm] [1 s−1] [m] [�] [m s−1] [×103]

−2.0 0.40 2.1 17 0.11 1.89 0.38 0.008 42 70 0.36 5 17.9 3.6

R: centreline radius of curvature Cf : friction factor (estimated by Blanckaert &
(negative along the n-axis) Graf 2001)

B: channel width τb: bottom shear stress, τb/ρ = u2
∗ = Cf U 2

d50: median grain size diameter of Fr = U / (gH )1/2: overall mean Froude number
the bed material Re= UH / ν: overall mean flow Reynolds number

Q: flow discharge Re∗ = u∗ks / ν: overall mean particle Reynolds number
H : overall mean flow depth ≈ depth ν: molecular viscosity

at centreline ks: Nikuradse equivalent sand roughness
Ss: overall mean water-surface slope

at the centreline
U : overall mean velocity

Table 1. Hydraulic conditions.

downstream derivatives vanish for axisymmetric flow, however, they are not essential
for the mechanisms underlying the two cross-stream circulation cells.

Table 1 shows the hydraulic conditions. Clearly, this involves a rather sharp bend,
as is indicated by the parameter values R/B =5 and R/H =17.9 (B is the channel
width, H is the reach-averaged water depth, which is equal to the depth at the channel
axis in the investigated cross-section at 60◦). With an aspect ratio B/H = 3.6, the flume
is much narrower than typical natural open-channel bends. Yet, these ratios do occur
in mountain rivers and man-made channels. Moreover, in a wide bend with a natural
bottom topography, the shallow point bar is usually wide and most of the time
the flow is concentrated in the deepest part of the cross-section, where a significant
transversal bottom slope exists (figure 20 in Odgaard 1984; figure 8.2 in Dietrich
1987). The flow in the deepest part of the cross-section in the experiment is therefore
considered to be representative of the flow in the deeper part of wider natural bends.

The key measuring device is an Acoustic Doppler Velocity Profiler (ADVP) that was
specially designed for laboratory applications (Hurther & Lemmin 1998). The ADVP
simultaneously measures profiles along its main axis of the three quasi-instantaneous
velocity components vj (t), from which the mean-velocity components vj and the
turbulent stress components v′

j v
′
k (j, k = s, n, z) can be derived. Detailed information

on its working principle, its experimental uncertainty and a comparison with other
velocity meters (see also the Appendix) can be found in Lemmin & Rolland (1997),
Hurther & Lemmin (1998, 2001), Blanckaert & Graf (2001) and Blanckaert & Lemmin
(2004). With this instrument non-intrusive velocity measurements were made in the
outer half of the cross-section located at 60◦ from the bend entrance. The ADVP was
mounted in a water-filled box attached to the outer bank. By traversing the ADVP
vertically, radial profiles covering about half the channel width were taken every
�z =0.5 cm. The measuring section, the measuring grid and the ADVP-configuration
are shown in figure 2.

The present analysis requires the evaluation of the various terms in the vorticity
equation, as well as the kinetic energy fluxes between mean flow and turbulence.
These equations include derivatives of the measured quantities, which are difficult
to evaluate directly from the raw data, because of the experimental scatter. The
high spatial resolution of our data allowed an efficient smoothing by means of
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two-dimensional splines with weight functions (de Boor 1978, Chaps 14 and 17).
Derivatives of the measured quantities were obtained analytically from the description
of the spline. Thanks to the weight functions, the measured data can be extended
outside the measuring grid by imposing physical boundary conditions (such as the
no-slip condition at rigid boundaries, no shear parallel to the water surface, etc.).
Wherever this has been done, it is indicated in the relevant figures. For further
information on the smoothing technique (including an example) and the extrapolations
outside the measuring grid, we refer to Blanckaert & Graf (2001).

The uncertainty in the evaluated terms in equations (4)–(6) for the vorticity balance
and equation (9) for the kinetic energy transfer is estimated in the Appendix as
always better than 40%. This is sufficient for the purpose of this paper, since our
interpretations focus on first-order effects.

6.2. Experimental results

The vectorial representation of the measured cross-stream velocity field, (vn, vz),
normalized by the overall mean velocity U = Q/(BH ), is shown in figure 3(d). The
centre-region cell reflects the ‘classical’ helical motion that is characteristic of flow in
bends. The magnitude of the velocities involved is typically 10% of U . A region with
weaker cross-stream velocities is found close to the outer bank. In the upper part of
this outer-bank region an additional circulation cell can be observed, with a sense of
rotation opposite to that of the centre-region cell. The velocities in this region are
typically a few cm s−1.

The circulatory part of the cross-stream motion is reflected by the downstream
vorticity, ωs , which is shown in figure 3(e). The centre-region cell and the outer-bank
cell, separated by the (ωs =0)-contour, are clearly visible in the vorticity field. The
vorticity increases towards the ‘eye’ of each cell and reaches maximum magnitudes
of about 0.9U/H near the eye of the centre-region cell and −0.22 U/H near the eye
of the outer-bank cell. Close to the outer-bank, ωs assumes positive values, which
represent the boundary layer near the bank, rather than an identifiable vortex.

The distribution of the normalized downstream velocity component, vs/U , is given
in figure 3(a). Its depth-averaged value is nearly constant over most of the measuring
area: Us/U ≈ 1.35 (figure 3b), which means that the depth-averaged velocity there is
well above the overall mean velocity.

Figure 3(b) also shows that the distribution of the normalized unit discharge,
UsBh/Q, with h denoting the local water depth, is concentrated in the deep outer
part of the cross-section. Integration of this profile shows that about 80% of the
discharge passes through the investigated outer half of the cross-section. The core of
maximum velocity, marked by in figure 3(a, b), is found near the transition between
the two circulation cells. Figure 3(c) compares some measured vs / Us-profiles with a
logarithmic profile for a friction factor Cf = 0.008, which corresponds to the value
in the experiment as estimated by Blanckaert & Graf (2001). The profiles shown
are averaged over the outer-bank region (n= −20 to −14 cm), the transition zone
(n= −14 to −8 cm) and the centre region (n = −8 to 0 cm). The profiles in these three
regions are rather similar: the measured velocities are well below the logarithmic
profile in the upper part of the water column and well above it in the lower part.
This deformation of the vs / Us-profiles is substantial, to the extent that the velocity
maximum is found in the lower part of the water column. By analysing the downstream
momentum equation on the basis of the measured data, Blanckaert & Graf (2004)
show that this redistribution of the downstream velocity is mainly due to advective
momentum transport by the two cross-stream circulation cells.
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Figure 3. (a) Isolines of normalized downstream velocity, vs/U . (b) Normalized depth-aver-
aged downstream velocity, Us/U ; normalized unit discharge, (UsBh) /Q. (c) Vertical profiles of
measured downstream velocity, vs /Us: 1 – outer-bank region (−20 to −14 cm); 2 – separation
both regions (−14 to −8 cm); 3 – centre region (−8 to 0 cm). (d) Vector representation of
normalized cross-sectional motion, (vn, vz) /U . (e) Isolines of normalized downstream vorticity,
ωsH/U . (f ) Extrapolation outside measuring grid.

Figure 4(a, b) shows the distributions of the turbulence properties v′
n
2 − v′

z
2 and v′

nv
′
z,

which play an important role in the vorticity equation. They have been normalized
by the characteristic shear velocity in the measuring section, u∗,60, which is defined
as u∗,60 =

√
gRh(−∂zS,60 / ∂s), in which −∂zS,60 / ∂s is the downstream water-surface

gradient at the centreline and Rh is the hydraulic radius. In the experiment, this shear
velocity was 0.045 m s−1. Near the flow boundaries, the velocity fluctuations perpen-
dicular to the boundary are hindered by geometrical constraints. Near the bottom
and near the water surface, this concerns the vertical fluctuations, so there v′

n
2 >v′

z
2.

In the region near the outer bank, the transverse fluctuations are hindered and
v′

n
2 <v′

z
2. The damping of the fluctuations by the water surface is only slightly weaker
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Figure 4. Isolines of normalized (a) turbulent normal stress difference, (v′
n
2 − v′

z
2) / u2

∗,60

(the thick grey line identifies v′
n
2 = v′

z
2); (b) turbulent shear stress, −v′

nv
′
z / u2

∗,60.

than that by the outer bank, and the line where v′
n
2 = v′

z
2, drawn in figure 4(a), only

slightly deviates from the bisector of the upper right corner of the flow domain.
There, the pattern of v′

n
2 − v′

z
2 is nearly antisymmetrical about this line. Similar

patterns of v′
n
2 − v′

z
2 have been observed in experiments with straight uniform

flow (Nezu et al. 1985, for airflow in a duct; Tominaga et al. 1989, for open-
channel flow). Nezu & Nakayama (1998, 1999) have shown that the damping by the
water surface depends on the Froude number; at low Froude numbers, like in the
present experiment, the water surface almost completely suppresses the nearby vertical
fluctuations.

The turbulent shear stress v′
nv

′
z seems to be correlated with the circulation cells.

Even though the cells have a different sense of rotation, this turbulent shear stress
does not change sign. Near the ‘eye’ of the weaker outer-bank cell, the absolute value
is only slightly less than near the ‘eye’ of the centre-region cell. The pattern of v′

nv
′
z is

nearly symmetrical about the bisector of the upper right corner of the flow domain,
which again indicates a similar influence of the water surface and the outer bank on
the turbulent stresses. A similar near-corner pattern of v′

nv
′
z has been measured by

Nezu & Nakagawa (1984) in the case of airflow in a duct. It is to be expected that
the influence of the water surface on v′

nv
′
z also depends on the Froude number. In the

region dominated by bottom friction, this stress component is primarily associated
with the transverse component of the bottom shear stress. It is positive there, since
the bottom shear stress is directed towards the centre of curvature, and so in the
positive n-direction.

7. Analysis of the centre-region cell
7.1. Observations (figures 3e, 5 and 6)

Integrated over the water depth, the centrifugal term in the vorticity equations (4)–(6)
is always positive, which complies with the sense of rotation of the centre-region cell.
Due to advective momentum transport by the centre-region cell, the velocity maximum
in the present experiments is in the lower part of the water column (figure 3c). As a
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Figure 5. Isolines of normalized terms in downstream vorticity equations (4)–(6), multiplied
by 10: (a) centrifugal term, (b) advective transport terms, (c) cross-stream turbulence anisotropy
terms, (d) cross-stream turbulent shear stress terms.

consequence, the centrifugal term –(∂/∂z)(v2
s /R) in the vorticity equation is negative

in a significant part of the water column (figure 5a), thus opposing the observed sense
of rotation of the centre-region cell.

The advective transport terms in the vorticity equation, vn∂ωs/∂n+ vz∂ωs / ∂z, are
of the same order of magnitude as the centrifugal term. The positive values in the
upper part of the water column (figure 5b) compensate for the negative centrifugal
term (figure 5a). This explains why the centre-region cell extends over the entire water
depth, instead of splitting into two counter-rotating cells on top of each other. The
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Figure 6. Isolines of the normalized kinetic energy fluxes between the mean flow and the
turbulence via the cross-stream turbulent stresses (cf. equation (9)).

advective transport is generally dominated by the transverse contribution, vn∂ωs/∂n.
The vertical contribution, which is not shown separately in figure 5, is usually much
smaller.

The role of the turbulent stress v′
nv

′
z in the centre-region cell is complex. The v′

nv
′
z-

terms are of leading order in the vorticity equation (figure 5d , cf. equation (8)). Close
to the bottom, v′

nv
′
z is associated with the transverse component of the bottom shear

stress. Hence, the v′
nv

′
z-term in the vorticity equation opposes the observed vorticity

in this layer, and mean-flow vorticity is dissipated into turbulence there (figure 6b).
Just above that near-bottom layer, but still in the lower part of the water column, the
v′

nv
′
z-term favours the observed vorticity. Analysis of the energy equation shows that

a weak kinetic energy flux from turbulence to the mean flow occurs via v′
nv

′
z. In this

zone, the centrifugal and v′
nv

′
z-terms agreeing with the sign of the existing vorticity

are mainly balanced by the opposed advective transport term. As mentioned in the
Appendix, the turbulence measurements in the lower 20% of the water column are
less accurate and should therefore be interpreted with care. In most of the upper part
of the water column, the v′

nv
′
z-term opposes the observed vorticity and mean-flow

kinetic energy is transferred to turbulence.

The (v′
n
2 − v′

z
2)-terms in the vorticity equation are smaller than the other terms, but

they are not negligible (cf. figure 5c). In the upper part of the water column, their
sign is opposite to that of the observed (positive) vorticity. In the lower part of the
water column, the sign of these terms complies with the observed vorticity.

7.2. Modelling implications

Based on equation (8), Blanckaert & de Vriend (2004) have proposed a nonlinear
model for the centre-region cell that accounts for its feedback with the vs-profile.
By combining this model with a two-dimensional depth-averaged flow model, it
should be possible to reproduce the velocity field in moderately curved flows with
a reasonable accuracy. For curvatures that are so strong that the velocity maximum
occurs in the lower part of the water column, like in the present experiment, it
is essential to include the advective momentum transport terms in the transversal
momentum equation. An accurate simulation of the centre-region cell, and of the flow
field in general, now requires the use of the fully three-dimensional flow equations.
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Turbulence is not purely dissipative. Restitution of kinetic energy from turbulence
to the mean flow occurs in certain regions of the flow, accompanied by mean vorticity
generation. The turbulence-generated vorticity, however, is relatively weak, so that
a fully three-dimensional numerical model with a linear turbulence closure must be
good enough to describe the centre-region cell, even in the case of strong curvature.

8. Analysis of the outer-bank cell
8.1. Observations (figures 3e, 5 and 6)

Except for the centrifugal term, all terms in the downstream vorticity equations (4)–(6)
(also see figure 5) and all kinetic energy fluxes between mean flow and turbulence (cf.
equation (9) and figure 6) are smaller in the outer-bank region than in the central
region. The profiles of the downstream velocity in the outer-bank region are similar
to those in the central region. The velocity maximum is located in the lower half of
the water column and ∂vs/∂z is slightly negative above that point. This implies that
the sign of the centrifugal term in the vorticity equation complies with the sense of
rotation of the outer-bank cell. In fact, this is the only mechanism that drives the
outer-bank cell in laminar curved flow.

In the flow domain covered by the outer-bank cell, the advective transport of
vorticity is negligible (figure 5b). Each of the cross-stream turbulence terms mainly
assumes negative values of the same order of magnitude as the centrifugal term,
which favour the outer-bank cell. As was shown before (cf. figure 4), the normal
stress difference v′

n
2 − v′

z
2 in the region occupied by the outer-bank cell is nearly

antisymmetrical and the shear stress v′
nv

′
z is nearly symmetrical about the bisector

of the top right corner of the flow domain. If these distributions were perfectly
antisymmetrical and symmetrical, respectively, like in a corner flow, antisymmetrical
patterns of the corresponding terms in the vorticity equation would result in each case
(as is easily demonstrated by interchanging the n- and z-indices). This indicates the
sensitivity of turbulence-generated vorticity to the influence of the flow boundaries.

The kinetic energy transfer between mean flow and turbulence via the cross-stream
turbulent stresses v′

n
2, v′

z
2 and v′

nv
′
z is an order of magnitude smaller than in the centre

region (figure 6). The occurrence of positive and negative contributions indicates
that mean-flow energy in the outer-bank cell is produced as well as dissipated by
the cross-stream turbulent stresses. The primary conclusion to be drawn, however, is
that the exchange of energy between mean flow and turbulence is quite small in this
area.

8.2. Interpretation and modelling implications

Our observations confirm the hypothesis of de Vriend (1981a) and Christensen et al.
(1999) that both skew-induced and turbulence-induced vorticity contribute to the
generation of the outer-bank cell. Moreover, both mechanisms strengthen each other
through a positive feedback, as indicated by the following observation.

In steady flow, all terms on the right-hand-side of equations (4)–(6) should add
up to zero. Even when taking the experimental uncertainty into account, the sum of
the investigated terms is negative in the flow region occupied by the outer-bank cell.
This non-zero sum is presumably mainly compensated by the non-uniformity term,
−(1 + n/R)−1vs∂ωs/∂s, which was not measured. This indicates that the outer-bank
cell further strengthens in the downstream direction, which is in line with the observed
strengthening of the outer-bank cell along the bend in curved laminar flow (Hille
et al. 1985) and with the observation that the outer-bank cell is much stronger in
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axisymmetric flow (∂ / ∂s =0). It also explains why the near-bank cell in turbulent
curved flow is stronger than in the corresponding straight-channel flow.

For the present case of a channel with vertical sidewalls and a straight inflow reach
followed by a constant-curvature bend, this positive feedback can be explained as
follows. In the straight inflow reach, near-bank circulation cells are induced by the
cross-stream turbulence. By advecting flow momentum, they deform the vs-profiles,
yielding a negative velocity gradient ∂vs/∂z in the upper part of the water column.
Upon entering the bend, this negative gradient gives rise to a centrifugal force that
enhances the outer-bank cell, hence the deformation of the vs-profile, etc. This positive
feedback between the cell and the centrifugal force tends to intensify the outer-bank
cell along the bend. Such an interaction between the two mechanisms has already
been suggested by de Vriend (1981a) for weakly curved flow.

Our observations show that the cross-stream turbulent stresses v′
n
2 − v′

z
2 and v′

nv
′
z

have a similar role in the vorticity balance. Hence, turbulence anisotropy is indeed the
physical cause of turbulence-induced vorticity. Slight asymmetries may be relevant to
the resulting vorticity pattern, which indicates the importance of accurately modelling
the boundary conditions in numerical simulations. Also the kinetic energy fluxes
via these turbulent stresses are similar and contribute to the generation as well as
the dissipation of mean-flow vorticity. The primary observation, however, is that the
energy fluxes between mean flow and turbulence over these cross-stream turbulent
stresses are quite small in this area.

Speziale (1987) attributes the failure of linear turbulence models to represent
turbulence-induced vorticity to their inability to link a non-zero turbulence anisotropy,
v′

n
2 − v′

z
2, to the downstream velocity field. Based on our combined analysis of the

vorticity dynamics and the kinetic energy transfer between mean flow and turbulence,
this hypothesis can be refined and complemented.

Although linear turbulence models are unable to correctly represent the turbulent
normal stresses, there is no physical reason why they should yield a zero cross-stream
turbulence anisotropy:

v′2
n∗ − v′2

z∗ = −2νt

(
∂vn∗

∂n∗ − ∂vz∗

∂z∗

)
�= 0. (15)

Consider for example a point in the central part of the centre-region cell, where
vz≈ 0. Obviously, ∂vn/∂z �= 0 and, when using a linear eddy viscosity model,
v′

nv
′
z = −νt (∂vn / ∂z + ∂vz/∂n) �= 0. Via the Mohr-circle representation, it can easily

be shown that this implies a non-zero turbulence anisotropy v′2
n∗ − v′2

z∗ �= 0, with
the (n∗, z∗)-coordinates along the principal axes of the turbulent stress tensor. As
a consequence, these models’ inability to correctly represent the turbulent normal
stresses does not explain why they cannot predict turbulence-generated cross-stream
circulation cells (be it incorrect ones).

Nonetheless, in the case of straight uniform flow considered by Speziale, linear
turbulence models do not reproduce the near-bank circulation cells, i.e. (vn, vz)= 0 and
consequently also v′

n
2 − v′

z
2 = −2νt (∂vn/∂n − ∂vz/∂z) = 0. This heuristic observation,

however, does not prove that it is impossible for these models to simulate turbulence-
generated circulation. Introducing a perturbation to the flow, (v̂n, v̂z) �= 0, such

that ω̂s �= 0 and v̂′2
n − v̂′2

z = −2νt (∂v̂n / ∂n − ∂v̂z / ∂z) �= 0, will generally give rise to
the generation and/or dissipation of mean-flow vorticity. The numerical model
shows that the perturbation dampens out, whence the turbulent stresses must be
dissipative.
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The analysis of our experimental data indicates that, in the region of the outer-bank
cell, the (weak) kinetic energy fluxes due to the cross-stream turbulent stresses are
directed both from the mean flow to the turbulence and inversely. Hence, the cross-
stream turbulent stresses contribute to the generation as well as the dissipation of the
outer-bank cell. Kinetic energy fluxes from the turbulence to the mean flow have been
observed in various other experiments in open-channel bends (Anwar 1986; Booij &
Tukker 1996; Booij 2003; and Shiono & Muto 1998 for the case of overbank flow in
a meander).

Our observations and the above analysis show that, in addition to Speziale’s (1987)
necessary condition, there is a second necessary condition for turbulence models
to reproduce turbulence-generated vorticity: the turbulence model must be able to
represent fluxes of kinetic energy from turbulence to the mean flow. This is confirmed
by the results of Kawahara & Tamai (1988), who demonstrate theoretically that linear
eddy viscosity models cannot represent turbulence-induced vorticity, unless negative
mixing coefficients are allowed (cf. equation (14)).

Nonlinear turbulence models, based on a nonlinear relationship between the
turbulent stresses and the strain rates, seem to satisfy both conditions. At least,
they correctly predict the near-bank cells in turbulent straight flow (Speziale 1987;
Colombini 1993), as well as the outer-bank cell in the present experiment (Jia et al.
2001). Higher-order turbulence models also seem to satisfy both conditions: Naot &
Rodi (1982) and Demuren & Rodi (1984) simulated the near-bank cells in turbulent
straight flow with an algebraic stress model, and Christensen et al. (1999) simulated
outer-bank cells in turbulent curved flow with a Reynolds stress model, even for weak
curvature. They have also succeeded in simulating the outer-bank cell in a bend with
a standard linear k−ε model, but only for very strong curvature ratios (R/H < 16).
With the k−ε model, a very strong skewing-induced vorticity generation is needed to
overcome the vorticity dissipation by the cross-stream turbulence. This is in line with
the above conclusions.

The following observation on the cross-stream circulation cells in straight uniform
flow also points to the dominant role of the energy fluxes. Our measurements show that
the effects of the water surface and the outer bank on the cross-stream turbulence, v′

n
2−

v′
z
2 and v′

nv
′
z (cf. figure 4), are nearly identical. The distributions of the corresponding

cross-stream turbulence terms in the downstream vorticity equation will thus be nearly
identical in a corner formed by two fixed boundaries and in one formed by a water
surface and a fixed boundary. Yet, Tominaga et al. (1989) and Nezu & Nakagawa
(1993) have shown that in straight uniform flow the resulting vorticity patterns are
significantly different. Two identical counter-rotating circulation cells exist in a corner
formed by two fixed boundaries, whereas in an open-channel corner the circulation
cell near the free water surface is dominant over the counter-rotating one near the
bank. These different vorticity patterns can be explained by slight asymmetries in
the patterns of v′

n
2 − v′

z
2 and v′

nv
′
z, but especially by differences in the kinetic energy

fluxes. Near the water surface, the kinetic energy fluxes are smaller than near the
fixed boundary, where the no-slip condition gives rise to much steeper mean velocity
gradients.

In summary, we can conclude from the present analysis that the proximity of flow
boundaries modifies the turbulence characteristics, which, in their turn, influence the
downstream vorticity field, and thus the cross-stream motion (vn, vz). In the case of a
bend with a vertical outer wall, this results in the formation of an outer-bank cell. The
above findings indicate that the vorticity pattern cannot be explained by considering
only the vorticity equation, as has been done in previous investigations: the kinetic
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energy transfer plays an essential role. An accurate description of the effects of
boundary proximity on the turbulence characteristics, and especially on the kinetic
energy transfer, is therefore a prerequisite to the accurate modelling of the flow field
in the vicinity of the outer bank.

9. Kinetic energy transfer
Our analysis shows that the accurate modelling of the kinetic energy fluxes between

mean flow and turbulence is the key to the accurate simulation of the cross-stream
circulation cells, especially the one near the outer bank. In order to estimate how the
production of turbulent kinetic energy is composed, the contributions of the cross-

stream turbulent stress components, v′
n
2, v′

z
2 and v′

nv
′
z (cf. figure 6), will be compared

with the main contributions related to friction at the flow boundaries.
In straight uniform flow through a vertical slice without lateral friction, turbulence

is produced by bottom friction and represented by the kinetic energy flux −2v′
sv

′
z esz,

with the strain rate esz defined according to equation (11). Assuming a triangular
distribution of −v′

sv
′
z, between 0 at the water surface and u2

∗ at the bottom, and
assuming a logarithmic vertical profile of vs , this can be elaborated to

−2v′
sv

′
z esz =

1

κ

u3
∗

H

(
H

z
− 1

)
or

−2v′
sv

′
z esz

u3
∗/H

=
1

κ

(
H

z
− 1

)
. (16)

This function is shown in figure 7(c). The measured distribution of this component
−2v′

sv
′
z esz/(u

3
∗,60/H ) in the present experiment is shown in figure 7(a). In the

central region, kinetic energy is transferred from turbulence to the mean flow in the
part of the water column where ∂vs/∂z < 0, since −2v′

sv
′
z esz/(u

3
∗,60/H ) < 0. Considera-

ble magnitudes of this quantity are found in this region: −2v′
sv

′
z esz/(u

3
∗,60/H ) =

O(−50). Near the bottom, mean flow kinetic energy is dissipated into turbulence,
with transfer rates that strongly increase towards the bottom and reach values of
−2v′

sv
′
z esz/(u

3
∗,60/H ) = O(300). This measured order of magnitude agrees with that

from the straight-flow profile in figure 7(c). In the part of the outer-bank region that
is covered by the measuring grid, this component of the kinetic energy transfer is
relatively small.

Close to the bottom, the kinetic energy transfer component −2v′
nv

′
z enz/(u

3
∗,60/H )

(figure 6b) is associated with the transversal component of the bottom friction. Its
maximum near-bottom values in the central region are of a similar order of
magnitude to those associated with the downstream component of the bottom friction,
−2v′

nv
′
z enz/(u

3
∗,60/H ) =O(100).

In the central region, the pattern of −2v′
sv

′
n esn/(u

3
∗,60/H ) (figure 7b), is similar to

that of −2v′
sv

′
z esz/(u

3
∗,60/H ) (figure 7a). In the upper part of the water column, where

∂vs / ∂z < 0, it is negative, whereas it is positive in the lower part and strongly increases
near the bottom, up to values O(100). The latter was to be expected, since −v′

sv
′
n

represents downstream friction on the vertical projection of the inclined bottom.
The strong increase of this term towards the outer bank is obviously associated
with the bank friction. Yet, the turbulence production by the bank shear stress only
reaches values of −2v′

sv
′
n esn/(u

3
∗,60/H ) = O(20), which is significantly smaller than the

turbulence production by the bottom shear stress. This indicates that the bank shear
stress is considerably smaller than the bottom shear stress, which is in agreement with
the observed smaller turbulence activity in the outer-bank region (Blanckaert & Graf
2001).
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Figure 7. Isolines of the normalized kinetic energy fluxes between the mean flow and the
turbulence via the shear stresses: (a, b) experimental data for curved flow (cf. equation (9));
(c) theoretical profile for straight uniform flow (cf. equation (16)).

Mean flow kinetic energy is thus mainly transferred to turbulence in the boundary
layers, especially near the bottom. The normalized kinetic energy flux related to
boundary friction reaches values O(100). Except for −2v′

sv
′
z esz/(u

3
∗,60/H ) =O(−50),

the normalized kinetic energy fluxes in the centre region are at least one order of
magnitude smaller, namely O(1 to 10), over most of the water column. In the outer-
bank region outside the area dominated by the sidewall friction, they are at least
another order of magnitude smaller, namely O(0.1). So the kinetic energy transfer
via the cross-stream turbulent stresses in the regions covered by the two circulation
cells represents a negligible part of the total kinetic energy transfer between mean
flow and turbulence. Hence it is irrelevant to the total energy expenditure in a bend.
Nonetheless, we have shown that these small kinetic energy fluxes play an essential
role in the formation of the circulation cells, hence the distribution of the downstream
velocity and the boundary shear stress.

10. Conclusions
Previous investigations of strongly curved turbulent flow, in which only the

downstream vorticity equation was considered, have not produced a clear picture
of the physics leading to the co-existence of two cross-stream circulation cells. The
present analysis, based on high-quality three-dimensional flow measurements in a
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single cross-section of a sharp open-channel bend such as occurs in nature, considers
the combination of the downstream vorticity balance and the kinetic energy transfer
between mean flow and turbulence. This leads to a better physical understanding,
especially of the role of turbulence. Furthermore, it gives guidance for the numerical
modelling of flow in sharply curved open-channel bends.

The centre-region cell is dominated by the balance between the driving centrifugal
term and the dissipating shear stress term in the downstream vorticity equation.
Advective momentum transport by the cross-stream circulation cell decreases the
downstream velocities in the upper part of the water column, while increasing them in
the lower part. The strength of the centre-region cell depends on the vertical profile of
the downstream velocity, which leads to a negative feedback between the downstream
velocity profile and the centre-region cell, and thus to a considerably weaker centre-
region cell than expected on the basis of the classical first-order perturbation approach.
In the case of mild to moderate curvature, a vorticity equation simplified to the above
balance is nonetheless suitable for determining the velocities in the centre-region cell,
provided that it is combined with a downstream momentum equation that takes due
account of the advective redistribution phenomenon.

In the case of strong curvature, when the velocity maximum is found in the lower
part of the water column, this simplified model would yield two opposite centre-region
cells on top of each other. The observed existence of a single centre-region cell that
covers the entire water column is to be attributed to advective transport of vorticity,
which compensates for the negative centrifugal term. The accurate simulation of the
centre-region cell for these strong curvatures requires the use of fully three-dimensional
momentum equations, including the advective transport terms.

In the outer-bank region, both the centrifugal force and the cross-stream turbulent
stresses contribute to the generation of the outer-bank cell. Here the sign of the
centrifugal term in the vorticity equation complies with the sense of rotation of the
outer-bank cell, which means that the centrifugal force enhances this circulation.
Terms related to the cross-stream turbulent stresses, representing the anisotropy of
those stresses due to the proximity of flow boundaries, are of the same order of
magnitude as the centrifugal term and mainly enhance the outer-bank cell. In the
outer-bank cell, vorticity generation by the centrifugal term and by the cross-stream
turbulence strengthen each other. The experimental results indicate that an outer-
bank cell will also occur in the case of weak curvature, and that its occurrence is not
caused by flow instability, like in the laminar flow case.

Linear turbulence closure models are unable to represent the turbulence-generated
part of the outer-bank cell, although they may well produce a certain anisotropy of
the cross-stream turbulence. When described with such a linear turbulence model, the
cross-stream turbulent stresses always dissipate mean flow vorticity, since the kinetic
energy transfer can only be from mean flow to turbulence. The experimental results
indicate that kinetic energy is also transferred from turbulence to the mean flow.
Although this restituted amount of kinetic energy is small compared to the total
production of turbulent kinetic energy, which is mainly due to boundary friction, it
plays an essential role in the dynamics of the outer-bank cell. Turbulence closures
that include the possibility of kinetic energy transfer between turbulence and mean
flow in either direction are therefore required to accurately reproduce the outer-bank
cell.
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Appendix. Estimation of the experimental uncertainty
A. 1. Uncertainty in the raw data

The measured data can decomposed as

f̃ raw

/
f = 1 + σraw, (A 1)

with f̃ the measured value, f the real value and σ the relative uncertainty.
Rolland (1994) and Hurther (2001) estimate the uncertainty in the mean-velocity

measurements by the ADVP as typically less than 4%, and the uncertainty in the
turbulent normal stresses, the turbulent shear stresses and the turbulent kinetic energy
as less than 10%. For the present data set, Blanckaert & Graf (2001) have made
more conservative estimates for the turbulent shear stresses, ± 20%, and for the
cross-stream velocities, ±0.002 m s−1 (which amounts to about ±10%). These higher
relative uncertainties are mainly due to the low mean values of these quantities:

σraw(vs) < 4%, σraw(vn) ∼ σraw(vz) < 10%, (A 2)

σraw(v′
i
2) ∼ σraw(k) < 10%, σraw(v′

iv
′
j ) < 20%. (A 3)

The uncertainty in the turbulence measurements increases progressively towards the
bottom, due to the steep mean-velocity gradient in the measuring volume: the lower
20% of the water column is affected by it. For that reason, the ADVP measurements
focus on the outer flow region, away from the bottom.

A. 2. Comparison with other velocimeters

The ADVP was specially designed at EPFL (Rolland 1994; Hurther 2001) for
laboratory investigations such as reported herein. Garbini, Forster & Jorgensen
(1982) have reported that ADV and hot-film anemometers yield close agreement
in the dynamic range of turbulence. Blanckaert & Lemmin (2004) have shown the
superiority of the ADVP over commercially available ADV systems: it has a better
turbulence resolution and measures simultaneously entire profiles. Lemmin & Rolland
(1997) and Hurther & Lemmin (1998) have compared the ADVP to LDA and hot-film
anemometers, and found comparable uncertainties in turbulence data. The ADVP has
a lower temporal resolution, but a higher spatial resolution thanks to its profiling
capacity. Its relatively low temporal resolution (∼ 20 Hz) is not a major drawback
for the present work, which focuses on the interaction between the mean flow and
the turbulence. In the higher frequency range, turbulence is nearly isotropic and
merely dissipates energy, without dynamically interacting with the mean flow. Its
higher spatial resolution makes the ADVP superior for the present purpose: it yields
better-defined spatial patterns of the measured quantities and allows a more accurate
evaluation of the terms in the equations for vorticity and energy transfer.

A. 3. Uncertainty in estimation of terms in the vorticity equation
and the energy transfer

The high spatial resolution of our data allows an efficient smoothing by means of
two-dimensional splines with weight functions (de Boor 1978, chaps. 14 and 17). The
smoothed distribution of the variables is found as a compromise between smoothness
and closeness to the raw data. Since the procedure is subjective, no hard estimation
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of the uncertainty can be made. However, the smoothing efficiently eliminates the
indeterminate errors, and it can reasonably be assumed that the remaining error
(mainly determinate error) varies slowly in space:

f̃ spline

/
f = 1 + σspline with σspline < σraw. (A 4)

The terms in the vorticity equation and the energy transfer are typically of the form
(∂f1/∂y)(∂f2/∂z), and can be decomposed according to equation (A 1) as

(∂f̃ 1/∂y)(∂f̃ 2/∂z)

(∂f1/∂y)(∂f2/∂z)
= 1 +

∂σ1f1/∂y

∂f1/∂y
+

∂σ2f2/∂z

∂f2/∂z
+

(
∂σ1f1/∂y

∂f1/∂y

)(
∂σ2f2/∂z

∂f2/∂z

)
, (A 5)

where the last term is negligible. This is a standard result of error propagation theory,
based on the worst-case assumption that the errors are cumulative.

Now, since the remaining error in the smoothed variables is assumed to vary slowly
in space, it can reasonably be assumed that

∂σsplinef /∂(y, z)

∂f /∂(y, z)
<

σsplinef

f
= σspline except wheref is close to zero, (A 6)

whence:

(∂f̃ 1/∂y)(∂f̃ 2/∂z)

(∂f1/∂y)(∂f2/∂z)
< 1 + σ1 + σ2. (A 7)

A similar expression can be derived for terms including derivatives of second order.
According to the above, the uncertainty in the evaluated terms in the vorticity

equations (4)–(6) can be estimated as

σ (ωs) = σ

(
∂vz

∂n
− ∂vn

∂z

)
< σ (vz) + σ (vn) = 20%, (A 8a)

σ

[
1

1 + n/R

∂

∂z

(
v2

s

R

)]
< 2σ (vs) = 8%, (A 8b)

σ

[
vn

∂ωs

∂n
+ vz

∂ωs

∂z

]
∼ σ

[
vn

∂ωs

∂n

]
< 30% since the second term is negligible, (A 8c)

σ

[
∂2

∂z∂n

(
v′

n
2 − v′

z
2
)

+
1

1 + n/R

1

R

∂v′
n
2

∂z

]
< 20% since the last term is negligible,

(A 8d)

σ

[{
1

1 + n/R

∂2

∂z2
− ∂

∂n

(
1

1 + n/R

∂

∂n

)}
[(1 + n/R)v′

nv
′
z]

]
< 40%; (A 8e)

and the uncertainty in the evaluated energy fluxes between the mean flow and the
turbulence, equation (9), as

σ

⌊(
v′

i
2 − 2

3
k

)
eii

⌋
< 30%, σ [2v′

iv
′
j eij ] < 40%. (A 9)

It should be emphasized that these estimations are rather conservative. In our analysis,
we compare the relative importance of different terms in the same flow regions, as well
as the relative importance of the same terms in different flow regions (centre region vs.
outer-bank region). It turns out that terms are either of comparable magnitude (e.g.
the centrifugal term and the cross-stream turbulence terms in the vorticity equation
for the outer-bank region), or differ by at least an order of magnitude (the energy
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fluxes via the cross-stream turbulence stresses, for example, are an order of magnitude
smaller in the outer-bank region than in the center-region). Our interpretations are
based on first-order distinctions only. Since the experimental uncertainty is always
less than 40%, our results and interpretations are not corrupted by experimental
inaccuracies.
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